9 research outputs found

    Learning to Rank: Online Learning, Statistical Theory and Applications.

    Full text link
    Learning to rank is a supervised machine learning problem, where the output space is the special structured space of emph{permutations}. Learning to rank has diverse application areas, spanning information retrieval, recommendation systems, computational biology and others. In this dissertation, we make contributions to some of the exciting directions of research in learning to rank. In the first part, we extend the classic, online perceptron algorithm for classification to learning to rank, giving a loss bound which is reminiscent of Novikoff's famous convergence theorem for classification. In the second part, we give strategies for learning ranking functions in an online setting, with a novel, feedback model, where feedback is restricted to labels of top ranked items. The second part of our work is divided into two sub-parts; one without side information and one with side information. In the third part, we provide novel generalization error bounds for algorithms applied to various Lipschitz and/or smooth ranking surrogates. In the last part, we apply ranking losses to learn policies for personalized advertisement recommendations, partially overcoming the problem of click sparsity. We conduct experiments on various simulated and commercial datasets, comparing our strategies with baseline strategies for online learning to rank and personalized advertisement recommendation.PhDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133334/1/sougata_1.pd

    Handling Class Imbalance in Link Prediction using Learning to Rank Techniques

    Full text link
    We consider the link prediction problem in a partially observed network, where the objective is to make predictions in the unobserved portion of the network. Many existing methods reduce link prediction to binary classification problem. However, the dominance of absent links in real world networks makes misclassification error a poor performance metric. Instead, researchers have argued for using ranking performance measures, like AUC, AP and NDCG, for evaluation. Our main contribution is to recast the link prediction problem as a learning to rank problem and use effective learning to rank techniques directly during training. This is in contrast to existing work that uses ranking measures only during evaluation. Our approach is able to deal with the class imbalance problem by using effective, scalable learning to rank techniques during training. Furthermore, our approach allows us to combine network topology and node features. As a demonstration of our general approach, we develop a link prediction method by optimizing the cross-entropy surrogate, originally used in the popular ListNet ranking algorithm. We conduct extensive experiments on publicly available co-authorship, citation and metabolic networks to demonstrate the merits of our method.Comment: The paper has been withdrawn due to a baseline implementation error in experiment
    corecore